Cellular forces and matrix assembly coordinate fibrous tissue repair.
نویسندگان
چکیده
Planar in vitro models have been invaluable tools to identify the mechanical basis of wound closure. Although these models may recapitulate closure dynamics of epithelial cell sheets, they fail to capture how a wounded fibrous tissue rebuilds its 3D architecture. Here we develop a 3D biomimetic model for soft tissue repair and demonstrate that fibroblasts ensconced in a collagen matrix rapidly close microsurgically induced defects within 24 h. Traction force microscopy and time-lapse imaging reveal that closure of gaps begins with contractility-mediated whole-tissue deformations. Subsequently, tangentially migrating fibroblasts along the wound edge tow and assemble a progressively thickening fibronectin template inside the gap that provide the substrate for cells to complete closure. Unlike previously reported mechanisms based on lamellipodial protrusions and purse-string contraction, our data reveal a mode of stromal closure in which coordination of tissue-scale deformations, matrix assembly and cell migration act together to restore 3D tissue architecture.
منابع مشابه
اهمیت فیبرونکتین در تکوین، ترمیم و درمان: مقاله مروری
Fibronectin (FN) is one of the essential component of the extra cellular matrix and their important role is as regulator of cellular activities and also fibronectin is an important scaffold for maintaining tissue. Fibronectin conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. In fact fibrone...
متن کاملFeatures and Methods of Making Nanofibers by Electrospinning, Phase Separation and Self-assembly
One of the major challenges in the field of tissue engineering is the production of scaffolding in nano-scale. The study of structural-functional connections in pathological and normal tissues with biologically active alternatives or engineered materials has been developed. Extracellular Matrix (ECM) is a suitable environment consisting of gelatin, elastin and collagen types I, II and III, etc....
متن کاملPlasma and cellular fibronectin: distinct and independent functions during tissue repair
Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged ...
متن کاملTherapeutic effects of electromagnetic fields in the stimulation of connective tissue repair.
The therapeutic effects of electric and magnetic fields have been studied largely for their promotion of connective tissue repair. The most widely studied application concerns bone repair and deals with acceleration of the healing of fresh fractures, delayed and non-unions, incorporation of bone grafts, osteoporosis, and osteonecrosis. More recently the effects of these fields upon the repair o...
متن کاملNanoscale variation of bioadhesive substrates as a tool for engineering of cell matrix assembly.
Although molecular and physical mechanisms of fibroblast matrix assembly have been widely investigated, the role of adhesive ligand presentation on matrix assembly has only been recently probed (Pereira et al. Tissue Eng., 2007). In the present study, various-sized albumin-derived nanocarriers (ANCs) were fabricated as nanoscale organization units for functionalization with the cell adhesion do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 7 شماره
صفحات -
تاریخ انتشار 2016